Capacity Calculating

Calculating Bucket Elevator Capacity

For engineering purposes, Maxi-Lift recommends using water level capacity as the basis for calculation. Actual bucket fill will vary depending on the product and operational conditions.

STEP 1: Multiply the CAPACITY of the bucket times the NUMBER OF BUCKETS per foot (12 divided by spacing) times the NUMBER OF ROWS of buckets. This will give the capacity in cubic inches of each running foot of the belt or chain.
STEP 2: Multiply the answer times the SPEED of the belt or chain in FPM for the capacity discharged per minute.

For FEET Per Minute

Π		head pulley diameter (in.)		RPM		in. / feet		feet / min.
3.1416	х		х		÷	12	=	

STEP 3: Then multiply by 60 minutes to get cubic inches per hour.

CONVERT CUBIC INCHES PER HOUR AS FOLLOWS:

BUSHELS:	Divide by 2,150 to convert to bushels.
CUBIC FEET:	Divide by 1,728 to convert to cubic feet.
SHORT TONS:	Multiply cubic feet capacity times weight of product per cubic foot and divide by 2,000.
METRIC TONS:	Multiply cubic feet capacity times weight of product per cubic foot and divide by 2,204.62.

For **BUSHELS** Per Hour

cu.in. / hour	cu. in. / bushel	BPH				
	<u>+ 2,150 =</u>					
For CUBIC F	EET Per Hour _					
cu.in. / hour	cu. in. / cu. ft.	cu. ft. / hour				
	<u>. 1728</u>	=				
For SHORT	TONS Per Hour	First determine cubic 1	f/hr. at water level using a	bove formula then proceed as follows		
cu.ft./ hr.	weight of pro	oduct /	lbs. / hour	lbs. / ton	t	tons / hr.
	— X —	=		÷2,000	=	
For METRIC	TONS Per Hour	First determine cubic ft/l	nr. at water level using above fo	ormula then proceed as follows		
cu.ft./ hr.	weight of pr cu. ft. — X —	oduct /	lbs. / hour	lbs./ metric ton ÷2,204.62	met	ric tons / hr.
CALCULATI	NG HORSEPOWE	R				
HP (at he	ead Shaft) = $\frac{W \times H}{33,000}$	- W =	lbs. / hour 60 minutes	H = Vertical Lift In Fe	et	
The above formula	a will result in the theoret	ical horsepower n	ecessary. It is reco	mmended that an additional	25%	

minimum be added for drive losses and up to 15% for elevator friction and cup digging through the boot.

Call: 1-800-527-0657 or Visit Us Online at: www.maxilift.com 16400 Midway Rd Dallas, TX 75001 • Ph: (972)735-8855 Fx: (972)735-8896 • info@maxilift.com

